## Chapter 9 Discrete Probability Distributions

## I. Understanding probability distributions

- A. A random variable measures a numerical event, the value of which, is determined by chance.
- B. The experimental outcomes described in chapter 8 are random variables. Examples include flipping a coin and customer buying habits based upon gender.
- C. Random variables are either discrete or continuous.
  - 1. **Discrete:** Only finite values, such as the countable numbers, can exist on the x-axis. Examples include tire defects and the number correct on a true or false exam.
  - 2. **Continuous**: Measurement may assume any value associated with an uninterrupted scale. Examples include the exact weight of a one-pound box of cookies and the average length of computer parts.
- D. A probability distribution lists all the probability values associated with a random variable (x).
- E. Example: In chapter 3, Linda found that 36, 18, and 6 tapes were rented for \$2, \$3, and \$4 respectively.
  - 1. The amount received is a discrete random variable with possible values (outcomes) of \$2, \$3, and \$4.
  - 2. Below is the probability distribution associated with tape rental fees.

| Discrete        | Probability Dis           | tribution           |                    |                |                      |
|-----------------|---------------------------|---------------------|--------------------|----------------|----------------------|
| Rental Fees (x) | Number of<br>Tapes Rented | Probability<br>P(x) | $[x \bullet P(x)]$ | x <sup>2</sup> | $[x^2 \bullet P(x)]$ |
| \$2.00          | 36                        | 36/60 = .60         | \$1.20             | 4              | \$2.40               |
| 3.00            | 18                        | 18/60 = .30         | 0.90               | 9              | 2.70                 |
| 4.00            | 6                         | 6/60 = <u>.10</u>   | 0.40               | 16             | 1.60                 |
|                 | 60                        | 1.0                 | \$2.50             |                | \$6.70               |

**Note:** This distribution is similar to a frequency distribution with P(x) replacing f.

- F. The mean and variance of a discrete probability distribution
  - 1. Random variable parameter calculations are similar to grouped data parameter calculations. However, division is not necessary for random variable calculations because the observations total 1.0 (100%).
  - 2. The mean of random variable x is called the expected value of x or E(x).
  - 3. The variance of x is V(x).

$$E(x) = \sum [x \cdot P(x)] = $2.50$$
  
See chart calculations

$$V(x) = [\sum x^2 \cdot P(x)] - [E(x)]^2$$
= \$6.70 - (\$2.50)^2  
= \$6.70 - \$6.25 = \$.45

**Note:** These formulas may be written using Greek letters with  $\mu$  for E(x) and  $\sigma^2$  for V(x).

## II. The binomial probability distribution

- A. Binomial experiments have the following characteristics.
  - 1. The experiment consists of a fixed number of trials. Two mutually-exclusive outcomes result from each trial.
  - Defined as success and failure, each set of outcomes can be counted and represent an independent event.
  - 3. The probability of success and the probability of failure must be constant with P(F) = 1 P(S).
- B. Binomial experiments include flipping a coin, counting product defects, and marketing response rates.
- C. Determining the binomial distribution requires calculating  $P(x) = \frac{n!}{x!(n-x)!} p^x q^{n-x}$  where:

| n is number of trials x is number of success | es p is probability of success | q, the probability of failure, is 1 - p |
|----------------------------------------------|--------------------------------|-----------------------------------------|

- 1. The page 46 coin flipping experiment, solved with a contingency table and a decision tree, is a binomial experiment. The probability of having exactly one head with two tosses is calculated below.
- 2. n = 2, x = 1 (head), p = .5, q = .5 Note: 0! = 1,  $x^0 = 1$ , and  $x^1 = x$





|                   | omial Probability<br>n for n = 2 and p = .5 |
|-------------------|---------------------------------------------|
| # of Heads<br>(x) | P(x)                                        |
| 0                 | .25                                         |
| 1                 | .50                                         |
| 2                 | 25                                          |
| Total             | 1.00                                        |